SingularCode

CALC2-04

4. Derivadas Parciais de 2a Ordem

Atualizado em: 25 de fevereiro de 2024

 

Por: Nelson H. Koshoji

4.1. Notações:

Em relação à x:

\[\frac{\partial}{\partial x}(\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial x^2} = f_{xx}\]

Em relação à y:

\[\frac{\partial}{\partial y}(\frac{\partial f}{\partial y}) = \frac{\partial^2 f}{\partial y^2} = f_{yy}\]

Mistas:

\[\frac{\partial}{\partial x}(\frac{\partial f}{\partial y}) = \frac{\partial^2 f}{\partial x\partial y} = f_{xy}\]

\[\frac{\partial}{\partial y}(\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial y\partial x} = f_{yx}\]

 

 

Observação: Quando a função z = f(x,y) é contínua no ponto da sua derivação, então:

\[\frac{\partial^2 f}{\partial x\partial y} = \frac{\partial^2 f}{\partial y\partial x}\]

 

4.2. Esquema:

 

4.3. Exercícios

1. Encontre as Derivadas Parciais das seguintes funções:

a) \(f(x,y) = x^3y^2+x^2y\)

b) \(f(x,y) = xy^3+5xy^2+2x+1\)

c) \(f(x,y) = x^2y-xy^2+2x-y\)

d) \(f(x,y) = xy\)

e) \(f(x,y) = x^2+y^2 – 2x^3y + 5xy^4-1\)

f) \(f(x,y) = x^3y + x^2y^2\)

g) \(f(x,y) = ln(xy)\)

 

Resposta:

a)

\(\large\frac{\partial^2 f}{\partial x^2} = 6xy^2+2y\)

\(\large\frac{\partial^2 f}{\partial x\partial y} = 6x^2y+2x\)

\(\large\frac{\partial^2 f}{\partial y^2} = 2x^3\)

\(\large\frac{\partial^2 f}{\partial y\partial x} = 6x^2y+2x\)

b)

\(\large\frac{\partial^2 f}{\partial x^2} = 0\)

\(\large\frac{\partial^2 f}{\partial x\partial y} = 3y^2+10y\)

\(\large\frac{\partial^2 f}{\partial y^2} = 6xy+10x\)

\(\large\frac{\partial^2 f}{\partial y\partial x} = 3y^2+10y\)

c)

\(\large\frac{\partial^2 f}{\partial x^2} = 2y\)

\(\large\frac{\partial^2 f}{\partial x\partial y} = 2x-2y\)

\(\large\frac{\partial^2 f}{\partial y^2} = -2x\)

\(\large\frac{\partial^2 f}{\partial y\partial x} = 2x-2y\)

d)

\(\large\frac{\partial^2 f}{\partial x^2} = 0\)

\(\large\frac{\partial^2 f}{\partial x\partial y} = 1\)

\(\large\frac{\partial^2 f}{\partial y^2} = 0\)

\(\large\frac{\partial^2 f}{\partial y\partial x} = 1\)

e)

\(\large\frac{\partial^2 f}{\partial x^2} = 2-12xy\)

\(\large\frac{\partial^2 f}{\partial x\partial y} = -6x^2+20y^3\)

\(\large\frac{\partial^2 f}{\partial y^2} = 2+60xy^2\)

\(\large\frac{\partial^2 f}{\partial y\partial x} = -6x^2+20y^3\)

f)

\(\large\frac{\partial^2 f}{\partial x^2} = 6xy+2y^2\)

\(\large\frac{\partial^2 f}{\partial x\partial y} = 3x^2+4xy\)

\(\large\frac{\partial^2 f}{\partial y^2} = 2x^2\)

\(\large\frac{\partial^2 f}{\partial y\partial x} = 3x^2+4xy\)

g)

\(\large\frac{\partial f}{\partial x} = \frac{1}{x}\)

          \(\large\frac{\partial^2 f}{\partial x^2} = -\frac{1}{x^2}\)

          \(\large\frac{\partial^2 f}{\partial x\partial y} = 0\)

 

\(\large\frac{\partial f}{\partial x} = \frac{1}{y}\)

          \(\large\frac{\partial^2 f}{\partial y^2} = -\frac{1}{y^2}\)

          \(\large\frac{\partial^2 f}{\partial y\partial x} = 0\)